Kinetika Pertumbuhan

Agroindustri Produk Fermentasi

Kompetensi yang Diharapkan

- Menguasai kinetika pertumbuhan mikroorganisme sehingga tepat penerapannya untuk operasi industri fermentasi secara batch, kontinyu dan fed-batch.
- Menguasai kinetika pertumbuhan mikroorganisme sehingga tepat penerapannya untuk operasi industri fermentasi produk metabolit primer, metabolit sekunder, biomassa sel, dan produk biotransformasi.

Microbial Growth

Microbial Cell Growth

- Mode of Growth
 - □ Selective assimilation of nutrients and convert into and also include Chemical rearrangement of protoplasmic material characteristic of the particular organism
 - □ Production of an increased amount of nuclear substance and cell division

Growth Phase

- Induction Phase (Lag Phase)
- Transient Phase (Acceleration Phase)
- **Exponential Phase**
- Stationary Phase (Declining Phase)
- Death Phase

Question Sheet

- Why microbial growth have an lag phase?
- Why death phase could be occurred in microbial growth?
- What is essential nutrient for growth of organism especially *prokaryotes*?
- What is important factor for cell division?

Growth Constants

Exponential – Stationary Growth Phase Total Biomass Production(G)

$$G = (X_m - X_i)$$

 $G = (X_m - X_i)$ Incident growth rate, Incident mean division rate $(\mu\phi)$

$$\mu\phi = \left[\frac{\ln\frac{x_2}{x_1}}{t_2 - t_1}\right] \approx \frac{1}{X} \cdot \frac{dX}{dt}$$

Specific growth rate, Beginning mean division rate (µ)

$$\mu = \lim_{t \to 0} \frac{1}{X} \cdot \frac{dX}{dt}$$

Doubling time of population (τ_D) ; exponential growth phase

$$\tau_D = \frac{\ln 2}{\mu}$$

Classical Growth Kinetics Empirical Approximation

• Monod Growth Kinetic
$$\mu \phi = \mu \cdot \frac{s}{K_s + s}$$

• *Tessier* Growth Kinetic
$$\mu \phi = \mu \cdot (1 - e^{-s/K_s})$$

• *Moser* Growth Kinetic
$$\mu \phi = \mu \cdot (1 + K_s \cdot s^{-\lambda})^{-1}$$

• *Contois* Growth Kinetic
$$\mu \phi = \mu \cdot \frac{s}{B \cdot X + s}$$

Empirical Growth Kinetics

Medium constituent Inhibition

Andrews Growth Kinetic

$$\mu\phi = \mu \cdot \frac{s}{K_s + s + s^2 \kappa_i}$$

Aiba Growth Kinetic

$$\mu \phi = \mu \cdot \frac{s \cdot K_p}{K_s + s \cdot (K_p + p)}$$

Growth Kinetics

Multiple essential nutrient

Bailey Growth Kinetic

$$\mu \phi = \mu \cdot \frac{s_1}{K_{s1} + s_1} \cdot \frac{s_2}{K_{s2} + s_2} \cdot \frac{s_3}{K_{s3} + s_3} \cdot \dots$$

Home Work

- Which kinetic approximation do you choose in case of microbial growth of Hepatotoxin produced Oscilatoria Agardhii NIVA CYA 97 in low temperature?
- Which empirical equation that you choose of inoculation of microorganism in case of multiple content limitation of nutrients, such as Mg²⁺, phosphate, Nitrate and organic compound?
- Which kinetic approximation do you choose cultivation photosynthetic microorganism that did not grew up in pH above 7.8?

Simple Bio-Production Kinetic

Cellular growth rate

$$\mu \phi = \mu \cdot \frac{s}{K_s + s}$$

$$\Rightarrow \text{ Yield factor}$$

$$\frac{dX}{dt} = \mu \cdot \phi \cdot X$$

$$\frac{dX}{dt} = \mu \cdot \frac{s \cdot X}{K_s + s}$$

$$Y_{X/s} = \frac{\left(\Delta X\right)}{\left(\Delta s\right)} = \frac{\left(\frac{dX}{dt}\right)}{\left(\frac{ds}{dt}\right)} \qquad Y_{P/X} = \frac{\left(\Delta P\right)}{\left(\Delta X\right)} = \frac{\left(\frac{dP}{dt}\right)}{\left(\frac{dX}{dt}\right)}$$

Substrate Utilizátion

$$-\frac{ds}{dt} = \frac{\mu}{Y_{X/s}} \cdot \frac{s \cdot X}{K_s + s}$$

Product Formation (Beginning of *Stationary Phase*)

$$\frac{dP}{dt} = Y_{P/X} \cdot \mu \cdot \frac{s \cdot X}{K_s + s}$$

Microbial Growth Kinetic

Environmental Condition

- Direct Effects
 - □ Light Illumination (Energy Source)
 - □ Temperature
 - □ Essential nutrients content
- Indirect Effects
 - □ Gas inlet volumetric rate
 - □ Gas inlet content
 - □ Liquid circulation rate
 - □ Non essential nutrients content

Question Sheet

- What is happen if microorganism is at 90°C? Why?
- In case of decreasing of temperature about 20°C from optimum temperature, what is happen in case of microbial growth rate?
- In case of ethanol production that was *S. sake* have ethanol tolerance around 10%, what do you do to make an whisky industry?
- Why a shade microbe does not grew well in high light illumination and commonly have not high temperature resistance?

Home Work

- Why optimum specific growth rate values of psychrophile factually, lower than thermophile?
- Why GC content of microbial DNA is important for classification of organism in terms of growth rate dependence on temperature?
- What is DBI?

Microbial Kinetic Studies

Non Elementer Reaction

Common reaction rate

$$-\frac{ds}{dt} = k \cdot s^{n}$$

$$N = \text{integer}$$

$$N = \text{non integer}$$

$$N = \text{Non Elementer}$$

Non Elementer Example:

$$CH_{3}CHO \rightarrow CH_{4} + CO$$

$$-\frac{d[CH_{3}CHO]}{dt} = k \cdot [CH_{3}CHO]^{\frac{3}{2}}$$

$$H_{2} + Br_{2} \rightarrow 2HBr$$

$$-\frac{d[Br_{2}]}{dt} = \frac{k_{1} \cdot [Br_{2}]^{\frac{3}{2}} \cdot [H_{2}]}{[HBr_{1} + k_{2} \cdot [Br_{2}]}$$

Reaction Mechanism

Mechanism path is microscopic description of a chemical reaction that was composed in term of elementer reactions Chemical reaction

$$2NO + 2H_2 \rightarrow N_2 + 2H_2O$$

$$\frac{d[H_2O_2]}{dt} = 0 \qquad k_2 \cdot [N_2O_2] \cdot [H_2] - k_3 \cdot [H_2O_2] \cdot [H_2] = 0 \qquad [H_2O_2] = \frac{k_2}{k_3} [N_2O_2]$$

$$\frac{d[N_2O_2]}{dt} = 0 \qquad k_1 \cdot [N_2O_2] - k_2 \cdot [N_2O_2] \cdot [H_2] = 0 \qquad [N_2O_2] = \frac{k_1}{k_1} \cdot \frac{[NO]^2}{1 + [H_2]}$$

$$\frac{d[N_2]}{dt} = k_2 \cdot [N_2O_2] \cdot [H_2] = k_2 \cdot \left(\frac{k_1}{k_{-1} + k_2} \cdot [NO]^2 - \frac{k_1}{k_{-1} + k_2} \cdot [NO]^2 - \frac{$$

Question Sheet

- What is mechanism path?
- What definition of intermediate species?
- What was become determining factor of reaction rate?

Microbial Growth

Enzymatic Reaction/Kinetic consideration

- Michaelis-Menten Kinetics

Michaelts-Menter Kinetics

Reaction mechanism

$$E + S \underset{k_{-1}}{\longleftrightarrow} ES \xrightarrow{k_2} P + E$$

When the interval of the

- - Reaction mechanism
 - $E + S \underset{k_{-1}}{\longleftrightarrow} ES \qquad ES + S \underset{k_{-2}}{\longleftrightarrow} ES_{2} \qquad ES \xrightarrow{k_{3}} P + E$ $\mu \phi = \frac{\mu \cdot s}{\mu + s + s^{2} / K_{i}}$ Product Activation and Inhibition $K_{m} + s + s^{2} / K_{i}$ Reaction mechanism $E + S \underset{k_{-1}}{\longleftrightarrow} ES \qquad ES \xrightarrow{k_{2}} P + E \qquad ES + P \underset{k_{-3}}{\longleftrightarrow} ESP$ $\mu \phi = \mu \cdot \frac{s \cdot K_{p}}{K_{s} + s \cdot (K_{p} + p)}$

$$\mu \phi = \mu \cdot \frac{s \cdot K_p}{K_s + s \cdot (K_p + p)}$$

Michaelis-Menten Kinetics

Reaction mechanism

Reaction mechanism
$$E + S \overset{k_1}{\longleftrightarrow} ES \qquad ES \overset{k_2}{\longrightarrow} P + E$$
Kinetic derivation $\overset{k_{-1}}{\longleftrightarrow} FS \overset{k_2}{\longrightarrow} P + E$

$$E_{0} = E + [ES] \quad [ES]_{0} = 0$$

$$\frac{d}{dt}[ES] = 0$$

$$\frac{d}{dt}[ES] = k_{1} \cdot S \cdot E - (k_{-1} + k_{2}) \cdot [ES]$$

$$[ES] = \frac{k_{1}}{k_{-1} + k_{2}} \cdot S \cdot E = \frac{k_{1}}{k_{-1} + k_{2}} \cdot S(E_{0} - [ES])$$

$$[ES] = \frac{E_{0} \cdot S}{S + \frac{k_{-1} + k_{2}}{k_{1}}}$$

$$\frac{\frac{d}{dt}P = k_2 \cdot [ES] = \frac{\left(k_2 \cdot E_0\right) \cdot S}{S + \left(\frac{k_{-1} + k_2}{k_1}\right)} = \frac{\left[\frac{d}{dt}P\right]_{\text{max}} \cdot S}{S + K_m}$$