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Equation of a straight line 

The basic equation of a straight line is: 

 

 

where: 

 y mx c 

 gradient 

 intercept on the -axis
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Equation of a straight line 

Given the gradient m of a straight line and one point  (x1, y1)  through which 

it passes, the equation can be used in the form: 

1 1( )y y m x x  
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Equation of a straight line 

If the gradient of a straight line is m and the gradient of a second straight line 

is m1 where the two lines are mutually perpendicular then: 

1 1

1
1  that is  mm m

m
   
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Tangents and normals to a curve at a given point 

Tangent 

The gradient of a curve, y = f (x), at a 

point P with coordinates (x1, y1) is given 

by the derivative of y (the gradient of the 

tangent) at the point: 
 

 

 
 

The equation of the tangent can then be 

found from the equation: 

1 1  at  ( , )
dy

x y
dx

1 1( )  where  
dy

y y m x x m
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Tangents and normals to a curve at a given point 

Normal 

The gradient of a curve, y = f (x), at a point P with coordinates (x1, y1) is 

given by the derivative of y (the gradient of the tangent) at the point: 

 

 

 

 

The equation of the normal (perpendicular to the tangent) can then be found 

from the equation: 

1 1  at  ( , )
dy

x y
dx
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Tangents and normals to a curve at a given point 

Tangent and normal 

Source: www.a-levelmathstutor.com 

Differentiation applications 

http://www.a-levelmathstutor.com/images/calculus/tan_norm-still.jpg
http://www.a-levelmathstutor.com/images/calculus/tan_norm-still.jpg
http://www.a-levelmathstutor.com/images/calculus/tan_norm-still.jpg
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Curvature 

The curvature of a curve at a point 

on the curve is concerned with how 

quickly the curve is changing 

direction in the neighbourhood of 

that point. 

 

Given the gradients of the curve at 

two adjacent points P and Q it is 

possible to calculate the change in 

direction  = 2 - 1 
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Curvature 

The distance over which this change 

takes place is given by the arc PQ. 

 

For small changes in direction   and 

small arc distance s the average rate 

of change of direction with respect to 

arc length is then: 

s




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Curvature 

A small arc PQ approximates to the 

arc of a circle of radius R where: 

 
 

So 

 

 

and in the limit as 

 

 

 

Which is the curvature at P; R being 

the radius of curvature  

arcPQ s R  

1

s R






1
0  this becomes  

d
s

ds R


  
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Curvature 

The radius of curvature R can be shown to be given by: 

3/ 2
2

2

2

1
dy

dx
R

d y

dx

   
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Centre of curvature 

If the centre of curvature C is located 

at the point (h, k) then: 

1 1

1 1

sin

cos

h x LP x R

k y LC y R





   

   
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Learning outcomes 

Evaluate the gradient of a straight line 
 

 Recognize the relationship satisfied by two mutually perpendicular lines 
 

Derive the equations of a tangent and a normal to a curve 
 

Evaluate the curvature and radius of curvature at a point on a curve 
 

Locate the centre of curvature for a point on a curve 

Differentiation applications 


