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  Information can be incomplete, inconsistent, 

 uncertain, or all three. In other words, information 

 is often unsuitable for solving a problem. 

  Uncertainty is defined as the lack of the exact 

 knowledge that would enable us to reach a perfectly 

    reliable conclusion. Classical logic permits only 

    exact reasoning. It assumes that perfect knowledge 

    always exists and the law of the excluded middle 

    can always be applied: 

    IF         A is true          IF   A is false 

    THEN A is not false         THEN A is not true 

Introduction, or what is uncertainty? 
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 Weak implications. Domain experts and                            

knowledge engineers have the painful task of 

establishing concrete correlations between IF 

(condition) and THEN (action) parts of the rules. 

Therefore, expert systems need to have the ability 

to handle vague associations, for example by 

accepting the degree of correlations as numerical 

certainty factors. 

Sources of uncertain knowledge 
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 Imprecise language.  Our natural language is                         

ambiguous and imprecise. We describe facts with                            

such terms as often and sometimes, frequently and                        

hardly ever. As a result, it can be difficult to                               

express knowledge in the precise IF-THEN form of               

production rules. However, if the meaning of the                             

facts is quantified, it can be used in expert systems.                            

In 1944, Ray Simpson asked 355 high school and                        

college students to place 20 terms like often on a                            

scale between 1 and 100. In 1968, Milton Hakel                       

repeated this experiment. 
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Quantification of ambiguous and imprecise 

terms on a time-frequency scale 

Term

Always
Very often
Usually
Often
Generally
Frequently
Rather often
About as often as not
Now and then
Sometimes
Occasionally
Once in a while
Not often
Usually not
Seldom
Hardly ever
Very seldom
Rarely
Almost never
Never

Mean value

99
88
85
78
78
73
65
50
20
20
20
15
13
10
10
7
6
5
3
0

Term

Always
Very often
Usually
Often

Generally
Frequently
Rather often

About as often as not
Now and then
Sometimes
Occasionally
Once in a while
Not often
Usually not
Seldom
Hardly ever
Very seldom
Rarely
Almost never
Never

Mean value

100
87
79
74
74
72
72
50
34
29
28
22
16
16
9
8
7
5
2
0

Milton Hakel (1968)Ray Simpson (1944)
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Unknown data. When the data is incomplete or                        
missing, the only solution is to accept the value                   
“unknown” and proceed to an approximate                               
reasoning with this value. 

Combining the views of different experts. Large 
expert systems usually combine the knowledge and 
expertise of a number of experts. Unfortunately,  
experts often have contradictory opinions and     
produce conflicting rules. To resolve the conflict,       
the knowledge engineer has to attach a weight to     
each expert and then calculate the composite 
conclusion. But no systematic method exists to     
obtain these weights. 
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 The concept of probability has a long history that     

goes back thousands of years when words like  

“probably”, “likely”, “maybe”, “perhaps” and  

“possibly” were introduced into spoken languages.  

However, the mathematical theory of probability   

was formulated only in the 17th century. 

 The  probability of an event is the proportion of     

cases in which the event occurs. Probability can    

also be defined as a scientific measure of chance.  

Basic probability theory 



 © Negnevitsky, Pearson Education, 2005 8 

 Probability can be expressed mathematically as a                             

numerical index with a range between zero (an                          

absolute impossibility) to unity (an absolute         

certainty). 

Most events have a probability index strictly       

between 0 and 1, which means that each event has       

at least two possible outcomes: favourable outcome       

or success, and unfavourable outcome or failure. 

the number of possible outcomes

the number of successes
success)P( 

the number of possible outcomes
failure)P( 

the number of failures
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 If s is the number of times success can occur, and f   

is the number of times failure can occur, then 

 If we throw a coin, the probability of getting a head   

will be equal to the probability of getting a tail. In a 

single throw, s = f =1, and therefore the probability     

of getting a head (or a tail) is 0.5. 

and 

fs

s
psuccessP




fs

f
qfailureP




p  q  1
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 Let A be an event in the world and B be another event.              

Suppose that events A and B are not mutually                     

exclusive, but occur conditionally on the occurrence of          

the other. The probability that event A will occur if               

event B occurs is called the conditional probability.                   

Conditional probability is denoted mathematically as        

p(A|B) in which the vertical bar represents GIVEN and         

the complete probability expression is interpreted as 

“Conditional probability of event A occurring given           

that event B has occurred”. 

Conditional probability 

occurcanBtimesofnumberthe

occurcanBandAtimesofnumberthe
BAp 
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 The number of times A and B can occur, or the 

probability that both A and B will occur, is called       

the joint probability of A and B. It is represented 

mathematically as p(AB). The number of ways B  

can occur is the probability of B, p(B), and thus 

 Similarly, the conditional probability of event B 

occurring given that event A has occurred equals 

Bp

BAp
BAp




Ap

ABp
ABp



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Hence, 

or 

Substituting the last equation into the equation 

yields the Bayesian rule: 

ApABpABp 

ApABpBAp 

Bp

BAp
BAp



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where:                                                                      

p(A|B) is the conditional probability that event A  

  occurs given that event B has occurred;              

p(B|A) is the conditional probability of event B 

  occurring given that event A has occurred;                

p(A) is the probability of event A occurring;            

p(B) is the probability of event B occurring. 

Bayesian rule 

Bp

ApABp
BAp



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The joint probability 

i

n

i
i

n

i
i BpBApBAp  

 11

A
B4

B3

B1

B2
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If the occurrence of event A depends on only two 

mutually exclusive events, B and NOT B , we obtain: 

where  is the logical function NOT.             

Similarly, 

Substituting this equation into the Bayesian rule yields: 

p(A) = p(A|B) p(B) + p(AB)  p(B)

p(B) = p(B A)  p(A) + p(B|A)  p(A)

ApABpApABp

ApABp
BAp





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Suppose all rules in the knowledge base are       

represented in the following form:                                   

 

 

This rule implies that if event E occurs, then the  

probability that event H will occur is p.                           

In expert systems, H usually represents a hypothesis      

and E denotes evidence to support this hypothesis. 

Bayesian reasoning 

IF   E is true                               

THEN  H is true {with probability p} 
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The Bayesian rule expressed in terms of hypotheses 

and evidence looks like this: 

where:                                                                                  

p(H) is the prior probability of hypothesis H being true;   

p(E|H) is the probability that hypothesis H being true will 

 result in evidence E;                                                             

p(H) is  the  prior  probability  of  hypothesis  H  being  

 false;                                                                             

p(E|H ) is the probability of finding evidence E even      

 when hypothesis H is false. 

HpHEpHpHEp

HpHEp
EHp





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 In expert systems, the probabilities required to solve  

a problem are provided by experts. An expert 

determines the prior probabilities for possible 

hypotheses p(H) and p(H), and also the    

conditional probabilities for observing evidence E  

if hypothesis H is true, p(E|H), and if hypothesis H   

is false, p(E|H). 

Users provide information about the evidence 

observed and the expert system computes p(H|E) for 

hypothesis H in light of the user-supplied evidence  

E. Probability p(H|E) is called the posterior 

probability of hypothesis H upon observing  

evidence E. 
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 We can take into account both multiple hypotheses 

H1, H2,..., Hm and multiple evidences E1, E2 ,..., En. 

The hypotheses as well as the evidences must be 

mutually exclusive and exhaustive. 

 Single evidence E and multiple hypotheses follow:  

 Multiple evidences and multiple hypotheses follow: 









m

k
kk

ii
i

HpHEp

HpHEp
EHp

1









m

k
kkn

iin
ni

HpHE...EEp

HpHE...EEp
E...EEHp

1
21

21
21
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 This requires to obtain the conditional probabilities                                         

of all possible combinations of evidences for all 

hypotheses, and thus  places an enormous burden                  

on the expert. 

 Therefore, in expert systems, conditional     

independence among different evidences assumed. 

Thus, instead of the unworkable equation, we                     

attain: 








m

k
kknkk

iinii
ni

HpHEp...HEpHEp

HpHEpHEpHEp
E...EEHp

1
21

21
21

...

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Let us consider a simple example. 

Suppose an expert, given three conditionally                

independent evidences E1, E2 and E3, creates three  

mutually exclusive and exhaustive hypotheses H1, H2   

and H3, and provides prior probabilities for these  

hypotheses – p(H1), p(H2) and p(H3), respectively.                 

The expert also determines the conditional                   

probabilities of observing each evidence for all                 

possible hypotheses. 

 Ranking potentially true hypotheses 
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The prior and conditional probabilities 

Assume that we first observe evidence E3. The expert 

system computes the posterior probabilities for all 

hypotheses as 

H y p o t h es i s
Probabilit y

 1i  2i  3i

0.40

0.9

0.6

0.3

0.35

0.0

0.7

0.8

0.25

0.7

0.9

0.5

iHp

iHEp 1

iHEp 2

iHEp 3
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After evidence E3 is observed, belief in hypothesis H1 

decreases and becomes equal to belief in hypothesis  

H2. Belief in hypothesis H3 increases and even nearly 

reaches beliefs in hypotheses H1 and H2. 

Thus, 

32,1,=,
3

1
3

3
3 i

HpHEp

HpHEp
EHp

k
kk

ii
i









0.34
25.0.90+35.07.0+0.400.6

0.400.6
31 




EHp

0.34
25.0.90+35.07.0+0.400.6

35.07.0
32 




EHp

0.32
25.0.90+35.07.0+0.400.6

25.09.0
33 




EHp
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Suppose now that we observe evidence E1. The 

posterior probabilities are calculated as 

Hence, 

32,1,=,
3

1
31

31
31 i

HpHEpHEp

HpHEpHEp
EEHp

k
kkk

iii
i









0.19
25.00.5+35.07.00.8+0.400.60.3

0.400.60.3
311 




EEHp

0.52
25.00.5+35.07.00.8+0.400.60.3

35.07.00.8
312 




EEHp

0.29
25.00.5+35.07.00.8+0.400.60.3

25.09.00.5
313 




EEHp

Hypothesis H2 has now become the most likely one. 
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After observing evidence E2, the final posterior  

probabilities for all hypotheses are calculated: 

Although the initial ranking was H1, H2 and H3, only 

hypotheses H1 and H3 remain under consideration   

after all evidences (E1, E2 and E3) were observed. 

32,1,=,
3

1
321

321
321 i

HpHEpHEpHEp

HpHEpHEpHEp
EEEHp

k
kkkk

iiii
i









0.45
25.09.00.5 0.7

0.7

0.7

0.5

+.3507.00.00.8+0.400.60.90.3

0.400.60.90.3
3211 




EEEHp

0
25.09.0+.3507.00.00.8+0.400.60.90.3

35.07.00.00.8
3212 




EEEHp

0.55
25.09.00.5+.3507.00.00.8+0.400.60.90.3

25.09.00.70.5
3213 




EEEHp



 © Negnevitsky, Pearson Education, 2005 26 

 The framework for Bayesian reasoning requires  

probability values as primary inputs.  The                 

assessment of these values usually involves human  

judgement. However, psychological research                  

shows that humans cannot elicit probability values  

consistent with the Bayesian rules.   

 This suggests that the conditional probabilities may               

be inconsistent with the prior probabilities given by              

the expert. 

Bias of the Bayesian method 
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Consider, for example, a car that does not start and  
makes odd noises when you press the starter. The  
conditional probability of the starter being faulty if               
the car makes odd noises may be expressed as: 

    IF             the symptom is “odd noises”                                                                  
THEN      the starter is bad {with probability 0.7} 

Consider, for example, a car that does not start and                                   
makes odd noises when you press the starter. The                        
conditional probability of the starter being faulty if                                         
the car makes odd noises may be expressed as: 

             P(starter is not bad|odd noises) =                                                              

    = p(starter is good|odd noises) = 1-0.7 = 0.3 
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 Therefore, we can obtain a companion rule that states  

IF        the symptom is “odd noises”                    

THEN the starter is good {with probability 0.3}  

 Domain experts do not deal with conditional  
probabilities and often deny the very existence of the  
hidden implicit probability (0.3 in our example).   

 We would also use available statistical information 
and empirical studies to derive the following rules: 

IF        the starter is bad                                                    
THEN the symptom is “odd noises” {probability 0.85}     

IF        the starter is bad                                                
THEN the symptom is not “odd noises” {probability 0.15} 
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 To use the Bayesian rule, we still need the prior 

probability, the probability that the starter is bad if 

the car does not start. Suppose, the expert supplies us 

the value of 5 per cent.  Now we can apply the 

Bayesian rule to obtain: 

The number obtained is significantly lower                

than the expert’s estimate of 0.7 given at the 

beginning of this section. 

 The reason for the inconsistency is that the expert  

made different assumptions when assessing the                 

conditional and prior probabilities. 

0.23
0.950.15+0.050.85

0.050.85





noisesoddbadisstarterp
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 Certainty factors theory is a popular alternative to 

Bayesian reasoning. 

 A certainty factor (cf ), a number to measure the 

expert’s belief. The maximum value of the certainty 

factor is, say, +1.0 (definitely true) and the 

minimum -1.0 (definitely false). For example, if 

the expert states that some evidence is almost 

certainly true, a cf value of 0.8 would be assigned 

to this evidence. 

Certainty factors theory and   

evidential reasoning 
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Uncertain terms and their                  

interpretation in MYCIN 

Term

Definitely not
Almost certainly not
Probably not
Maybe not
Unknown

Certainty Factor

+0.4
+0.6
+0.8
+1.0

Maybe
Probably
Almost certainly
Definitely

1.0
_

0.8
_

0.6
_

0.4
_

0.2 to +0.2
_



 © Negnevitsky, Pearson Education, 2005 32 

 In expert systems with certainty factors, the  

knowledge base consists of a set of rules that have  

the following syntax: 

    

    IF        <evidence>                                                                                  

THEN <hypothesis> {cf } 

    where cf represents belief in hypothesis H given             

that evidence E has occurred. 
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 The certainty factors theory is based on two functions: 

measure of belief MB(H,E), and measure of disbelief 

MD(H,E  ). 

p(H) is the prior probability of hypothesis H being true; 

p(H|E) is the probability that hypothesis H is true given 

   evidence E. 

if p(H) = 1










MB (H, E) =

1

max 1, 0 - p(H)

max p(H |E), p(H) -

-

p(H)
otherwise

if p(H) = 0










MD(H, E) =

1

min 1, 0 - p(H)

min p(H |E), p(H) p(H)
otherwise
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 The values of MB(H, E) and MD(H, E) range  

between 0 and 1. The strength of belief or       

disbelief in hypothesis H depends on the kind of  

evidence E observed. Some facts may increase the  

strength of belief, but some increase the strength of         

disbelief.   

The total strength of belief or disbelief in a  

hypothesis: 

EH,MD,EH,MBmin-

EH,MDEH,MB
=cf

1

-
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Example:                                                         

Consider a simple rule:                                                  

IF          A is X                                                                

THEN   B is Y                                                            

An expert may not be absolutely certain that this rule                          

holds. Also suppose it has been observed that in some                       

cases, even when the IF part of the rule is satisfied and 

object A  takes on  value X, object B can acquire some            

different value Z. 

IF           A is X                     

THEN    B is Y {cf 0.7};                

      B is Z {cf 0.2} 
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 The certainty factor assigned by a rule is propagated  

through the reasoning chain. This involves  

establishing the net certainty of the rule consequent  

when the evidence in the rule antecedent is uncertain:                                 

    cf (H,E) =  cf (E) x cf                                                                   

For example,                                                                                 

IF        sky is clear                                                                    

THEN the forecast is sunny {cf 0.8}                                      

    and the current certainty factor of sky is clear  is 0.5,  

then                                                                                                

    cf (H,E) = 0.5  0.8 = 0.4                                                        

This result can be interpreted as “It may be sunny”. 
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 For conjunctive rules such as 

 

 

 

    the certainty of hypothesis H, is established as follows:   
cf (H,E1 E2…En) = min [cf (E1), cf (E2),...,cf (En)]  

cf  

    For example,                                                                              

IF        sky is clear                                                                                 

AND   the forecast is sunny                                                           

THEN the action is ‘wear sunglasses’ {cf 0.8} 

    and the certainty of sky is clear is 0.9 and the certainty of the  

forecast of sunny is 0.7, then                                                     

cf (H,E1E2) =  min [0.9, 0.7]  0.8 = 0.7  0.8 = 0.56 

IF <evidenceE1>...
AND <evidenceEn>

THEN <hypothesisH> {cf }
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 For disjunctive rules such as 

 

 

 

    the certainty of hypothesis H , is established as follows:                     

cf (H,E1 E2… En) =  max [cf (E1), cf (E2),...,cf (En)]  cf 

     For example,                                                                                                       

IF         sky is overcast                                                                                            

OR       the forecast is rain                                                                                    

THEN  the action is ‘take an umbrella’ {cf 0.9} 

     and the certainty of sky is overcast is 0.6 and the certainty of    the 

forecast of rain is 0.8, then                                                        

cf (H,E1E2 ) = max [0.6, 0.8]  0.9 = 0.8  0.9 = 0.72 

IF <evidenceE1>
...

OR <evidenceEn>

THEN <hypothesis H> {cf }
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 When the same consequent is obtained as a result of       
the execution of two or more rules, the individual   
certainty factors of these rules must be merged to           
give a combined certainty factor for a hypothesis. 

 Suppose the knowledge base consists of the following 
rules:                                                                                      
Rule 1:     IF        A is X                                                                    
           THEN C is Z {cf 0.8}  

    Rule 2:     IF       B   is Y                                                         
           THEN C  is Z {cf 0.6} 

    What certainty should be assigned to object C          
having value Z if both Rule 1 and Rule 2 are fired? 
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Common sense suggests that, if we have two                  

pieces of evidence (A is X and B is Y) from             

different sources (Rule 1 and Rule 2) supporting                 

the same hypothesis (C is Z), then the confidence           

in this hypothesis should increase and become   

stronger than if only one piece of evidence had                 

been obtained. 
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To calculate a combined certainty factor we can 

use the following equation: 

    where:                                                                                

cf1 is the confidence in hypothesis H established by Rule 1;                                                                                     

cf2 is the confidence in hypothesis H established by Rule 2;      

|cf1| and |cf2| are absolute magnitudes of cf1 and cf2,                                                                    

 respectively. 

if cf  0 andcf  0











 cf1  cf2  (1 - cf1)

cf(cf1, cf2) =
1 - min |cf1|, |cf2|

cf1  cf2

cf1  cf2  (1  cf1)

if cf  0 or cf  0

if cf < 0 andcf < 0
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The certainty factors theory provides a practical 

alternative to Bayesian reasoning. The heuristic 

manner of combining certainty factors is different 

from the manner in which they would be combined 

if they were probabilities. The certainty theory is 

not “mathematically pure” but does mimic the 

thinking process of a human expert. 
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Comparison of Bayesian reasoning 

and certainty factors 

 Probability theory is the oldest and best-established 

technique to deal with inexact knowledge and 

random data. It works well in such areas as 

forecasting and planning, where statistical data is 

usually available and accurate probability 

statements can be made. 
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 However, in many areas of possible applications of 

expert systems, reliable statistical information is not 

available or we cannot assume the conditional 

independence of evidence. As a result, many 

researchers have found the Bayesian method 

unsuitable for their work. This dissatisfaction 

motivated the development of the certainty factors 

theory. 

 Although the certainty factors approach lacks the 

mathematical correctness of the probability theory,  

it outperforms subjective Bayesian reasoning in     

such areas as diagnostics. 
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 Certainty factors are used in cases where the 

probabilities are not known or are too difficult or 

expensive to obtain. The evidential reasoning 

mechanism can manage incrementally acquired 

evidence, the conjunction and disjunction of 

hypotheses, as well as evidences with different 

degrees of belief. 

 The certainty factors approach also provides better 

explanations of the control flow through a rule-

based expert system. 



 © Negnevitsky, Pearson Education, 2005 46 

 The Bayesian method is likely to be the most 

appropriate if reliable statistical data exists, the 

knowledge engineer is able to lead, and the expert is 

available for serious decision-analytical 

conversations. 

 In the absence of any of the specified conditions,  

the Bayesian approach might be too arbitrary and 

even biased to produce meaningful results. 

 The Bayesian belief propagation is of exponential 

complexity, and thus is impractical for large 

knowledge bases. 


