Reliability

Sistem Perawatan
TIP – FTP – UB

Outline

- - ☑ Providing Redundancy

Learning Objectives

When you complete this session you should be able to:

- 1. Describe how to improve system reliability
- 2. Determine system reliability

Strategic Importance of Maintenance and Reliability

- ☑ Failure has far reaching effects on a firm's
 - ☑ Operation
 - ☑ Reputation
 - ☑ Profitability
 - Dissatisfied customers

 - ☑ Profits becoming losses
 - Reduced value of investment in plant and equipment

Maintenance and Reliability

- ☑ The objective of maintenance and reliability is to maintain the capability of the system while controlling costs
 - ☑ Maintenance is all activities involved in keeping a system's equipment in working order
 - ☑ Reliability is the probability that a machine will function properly for a specified time

Important Tactics

- ☑ Reliability
 - 1. Improving individual components
 - 2. Providing redundancy
- - 1. Implementing or improving preventive maintenance
 - 2. Increasing repair capability or speed

Maintenance Strategy

Employee Involvement

Information sharing
Skill training
Reward system
Employee empowerment

Maintenance and Reliability Procedures

Clean and lubricate
Monitor and adjust
Make minor repair
Keep computerized records

Results

Reduced inventory
Improved quality
Improved capacity
Reputation for quality
Continuous improvement
Reduced variability

Figure 1

Reliability

Improving individual components

$$R_s = R_1 \times R_2 \times R_3 \times ... \times R_n$$

where R_1 = reliability of component 1 R_2 = reliability of component 2 and so on

Overall System Reliability

Average reliability of each component (percent)

Figure 2

Reliability Example

Reliability of the process is

$$R_s = R_1 \times R_2 \times R_3 = .90 \times .80 \times .99 = .713 \text{ or } 71.3\%$$

Reliability Example

$$R = 1 - (1 - R_A)(1 - R_B)$$

$$R = [1 - (1 - R_A)(1 - R_B)][1 - (1 - R_C)(1 - R_D)]$$

Product Failure Rate (FR)

Basic unit of measure for reliability

$$FR(\%) = \frac{Number\ of\ failures}{Number\ of\ units\ tested} \times 100\%$$

$$FR(N) = \frac{Number\ of\ failures}{Number\ of\ unit-hours\ of\ operating\ time}$$

Mean time between failures

$$MTBF = \frac{1}{FR(N)}$$

Failure Rate Example

20 air conditioning units designed for use in a production facility operated for 1,000 hours
One failed after 200 hours and one after 600 hours

$$FR(\%) = \frac{2}{20}(100\%) = 10\%$$

$$FR(N) = \frac{2}{20,000 - 1,200} = .000106 \text{ failure/unit hr}$$

$$MTBF = \frac{1}{.000106} = 9,434 \ hrs$$

Failure Rate Example

20 air conditioning units designed for use in a production facility operated for 1,000 hours
One failed after 200 hours and one after 600 hours

$$FR(\%) = \frac{2}{20}(100\%) = 10\%$$

$$FR(N) = \frac{2}{20,000 - 1,200} = .000106 \text{ failure/unit hr}$$

$$MTBF = \frac{1}{.000106} = 9,434 \ hrs$$

Failure Rate Example

20 air conditioning units designed for use in a production facility operated for 1,000 hours

One fai

Failure rate per trip

FR(N) =

FR = FR(N)(24 hrs)(6 days/trip)

FR = (.000106)(24)(6)

FR = .153 failures per trip

.000106 = 3,434 ms

Providing Redundancy

Provide backup components to increase reliability

Probability
of first
component
working+Probability
of second
component
workingxProbability
of needing
second
component(.8)+
$$(.8)$$
x $(1 - .8)$ =.8+.16=.96

Redundancy Example

A redundant process is installed to support the earlier example where $R_s = .713$

Reliability has increased from .713 to .94

=
$$[.9 + .9(1 - .9)] \times [.8 + .8(1 - .8)] \times .99$$

= $[.9 + (.9)(.1)] \times [.8 + (.8)(.2)] \times .99$
= $.99 \times .96 \times .99 = .94$

Maintenance

- - ☑ Preventive maintenance routine inspection and servicing to keep facilities in good repair
 - ☑ Breakdown maintenance emergency or priority repairs on failed equipment

Implementing Preventive Maintenance

- ☑ Need to know when a system requires service or is likely to fail
- ☑ High initial failure rates are known as infant mortality
- ☑ Once a product settles in, MTBF generally follows a normal distribution
- ☑ Good reporting and record keeping can aid the decision on when preventive maintenance should be performed

Increasing Repair Capabilities

- 1. Well-trained personnel
- 2. Adequate resources
- 3. Ability to establish repair plan and priorities
- 4. Ability and authority to do material planning
- 5. Ability to identify the cause of breakdowns
- 6. Ability to design ways to extend MTBF