
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 5

More SQL:

Complex Queries,

Triggers, Views,

and Schema

Modification

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 5

More SQL: Complex

Queries, Triggers,

Views, and Schema

Modification

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 5 Outline

• More Complex SQL Retrieval Queries

• Specifying Additional Constraints and

Actions in SQL

– CREATE ASSERTION

– CREATE TRIGGER

• Views (virtual tables) in SQL

– CREATE VIEW

• Schema Modification in SQL

– ALTER, DROP statements

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Outline of Topics for More Complex

SQL Retrieval Queries

• Handling NULLs, 3-valued Logic in SQL

• Nested Queries

– Correlated vs. uncorrelated

– EXISTS function

• Joined Tables, Inner Joins, and Outer Joins

• Aggregate Functions and Grouping in SQL

– COUNT, AVG, SUM, MIN, MAX functions

– GROUP BY, HAVING clauses

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Handling NULLs in SQL

• SQL allows queries that check if an attribute is NULL
(missing or undefined or not applicable)

• SQL uses IS or IS NOT to compare an attribute to NULL
because it considers each NULL value distinct from other
NULL values, so equality comparison is not appropriate.

• Example: Query 14: Retrieve the names of all employees
who do not have supervisors.

Q14: SELECT FNAME, LNAME
 FROM EMPLOYEE
 WHERE SUPERSSN IS NULL ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

3-valued Logic in SQL

• Standard 2-valued logic assumes a condition can
evaluate to either TRUE or FALSE

• With NULLs a condition can evaluate to UNKNOWN,
leading to 3-valued logic

• Example: Consider a condition EMPLOYEE.DNO = 5; this
evaluates for individual tuples in EMPLOYEE as follows:

– TRUE for tuples with DNO=5

– UNKNOWN for tuples where DNO is NULL

– FALSE for other tuples in EMPLOYEE

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

3-valued Logic in SQL (cont.)

• Combining individual conditions using AND, OR, NOT
logical connectives must consider UNKNOWN in addition
to TRUE and FALSE

• Next slide (Table 5.1) shows the truth tables for 3-valued
logic

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Nesting of Queries in SQL

• A complete SELECT ... query, called a nested query, can
be specified within the WHERE-clause of another query
– The other query is called the outer query

– Many of the previous queries can be specified in an
alternative form using nesting

• Query 1: Retrieve the name and address of all employees
who work for the 'Research' department.

Q1:SELECT FNAME, LNAME, ADDRESS
 FROM EMPLOYEE
 WHERE DNO IN (SELECT DNUMBER
 FROM DEPARTMENT
 WHERE DNAME='Research') ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Nesting of Queries (cont.)

• In Q1, the nested query selects the DNUMBER of the
'Research' department

• The outer query select an EMPLOYEE tuple if its DNO
value is in the result of the nested query

• The comparison operator IN compares a value v with a
set (or multi-set) of values V, and evaluates to TRUE if v
is one of the elements in V

• In general, can have several levels of nested queries

• A reference to an unqualified attribute refers to the
relation declared in the innermost nested query

• In this example, the nested query is not correlated with
the outer query

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Correlated Nested Queries

• If a condition in the WHERE-clause of a nested query references an
attribute of a relation declared in the outer query, the two queries are
said to be correlated

– The result of a correlated nested query is different for each tuple
(or combination of tuples) of the relation(s) the outer query

• Query 12: Retrieve the name of each employee who has a dependent
with the same first name as the employee.

Q12: SELECT E.FNAME, E.LNAME
 FROM EMPLOYEE AS E
 WHERE E.SSN IN
 (SELECT D.ESSN
 FROM DEPENDENT AS D
 WHERE E.FNAME=D.DEPENDENT_NAME) ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Correlated Nested Queries (cont.)

• In Q12, the nested query has a different result for each

tuple in the outer query (because it refers to E.FNAME)

• A query written with nested SELECT... FROM...

WHERE... blocks and using the = or IN comparison

operators can always be expressed as a single block

query.

• For example, Q12 may be written as in Q12A

Q12A: SELECT E.FNAME, E.LNAME

 FROM EMPLOYEE E, DEPENDENT D

 WHERE E.SSN=D.ESSN

AND

 E.FNAME=D.DEPENDENT_NAME ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Correlated Nested Queries (cont.)

• The original SQL as specified for SYSTEM R also had a

CONTAINS comparison operator, which is used in

conjunction with nested correlated queries

– This operator was dropped from the language, possibly

because of the difficulty in implementing it efficiently

– Most implementations of SQL do not have this operator

– The CONTAINS operator compares two sets of values, and

returns TRUE if one set contains all values in the other set

• Reminiscent of the division operation of algebra (see Chapter

6)

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Correlated Nested Queries (cont.)

• Example of Using CONTAINS (not in current SQL)

• Query 3: Retrieve the name of each employee who works

on all the projects controlled by department number 5.

Q3: SELECT E.FNAME, E.LNAME

 FROM EMPLOYEE AS E

 WHERE ((SELECT W.PNO

 FROM WORKS_ON AS W

 WHERE E.SSN=W.ESSN)

 CONTAINS

 (SELECT P.PNUMBER

 FROM PROJECT AS P

 WHERE P.DNUM=5)) ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Correlated Nested Queries (cont.)

• In Q3, the second nested query, which is not

correlated with the outer query, retrieves the

project numbers of all projects controlled by

department 5

• The first nested query, which is correlated,

retrieves the project numbers on which the

employee works; this is different for each

employee tuple because it references E.SSN

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The EXISTS Function in SQL

• EXISTS is used to check whether the result of a

query is empty (contains no tuples) or not

(contains one or more tuples)

– Applied to a query, but returns a boolean result

(TRUE or FALSE) AND list of tupples.

– Can be used in the WHERE-clause as a condition

– EXISTS (Q) evaluates to TRUE if the result of Q

has one or more tuple; evaluates to FALSE if the

result of Q has no tuples

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The EXISTS Function (cont.)

• Query 7: Retrieve the names of employees who are

department managers and have at least one

dependent.

Q7: SELECT M.FNAME, M.LNAME

 FROM EMPLOYEE AS M

 WHERE EXISTS (SELECT *

 FROM DEPENDENT

 WHERE M.SSN=ESSN)

 AND

 EXISTS (SELECT *

 DEPARTMENT

M.SSN=MGRSSN) ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The EXISTS Function (cont.)

• Query 6: Retrieve the names of employees who have no

dependents.

Q6: SELECT E.FNAME, E.LNAME

 FROM EMPLOYEE E

 WHERE NOT EXISTS (SELECT *

 FROM DEPENDENT D

 WHERE E.SSN=D.ESSN) ;

• In Q6, the correlated nested query retrieves all

DEPENDENT tuples related to an EMPLOYEE tuple. If

none exist, the EMPLOYEE tuple is selected

– EXISTS is necessary for the expressive power of SQL

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Explicit (Literal) Sets in SQL

• An explicit (enumerated) set of values is

enclosed in parentheses

• Query 13: Retrieve the social security

numbers of all employees who work on

project number 1, 2, or 3.

Q13: SELECT DISTINCT ESSN

 FROM WORKS_ON

 WHERE PNO IN (1, 2, 3) ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Types of SQL Joins

(INNER) JOIN: Returns records that have matching values in both tables

LEFT (OUTER) JOIN: Return all records from the left table, and the

matched records from the right table

RIGHT (OUTER) JOIN: Return all records from the right table, and the

matched records from the left table

FULL (OUTER) JOIN: Return all records when there is a match in either

left or right table

https://www.w3schools.com/sql/sql_join.asp

https://www.w3schools.com/sql/sql_join.asp

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Joined Tables (Relations) in SQL

• Can specify a "joined relation" in the FROM-

clause

– Looks like any other relation but is the result of

a join

– Allows the user to specify different types of

joins (INNER JOIN, NATURAL JOIN, LEFT

OUTER JOIN, RIGHT OUTER JOIN, CROSS

JOIN, etc) – see the next slides

– Each join type can specify a different query

and produce a different result

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Types of join – INNER JOIN

• This is the regular join operation

• Joined tuples must satisfy all join conditions

• Example: Query QJ1: Retrieve the employee names
with the names of the department they work for

SELECT E.FNAME, E.LNAME, D.DNAME

FROM DEPARTMENT AS D, EMPLOYEE AS E

WHERE D.DNUMBER=E.DNO ;

This can be written using joined tables as follows:

SELECT E.FNAME, E.LNAME, D.DNAME

FROM (DEPARTMENT AS D JOIN EMPLOYEE AS E ON

D.DNUMBER=E.DNO) ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Types of join – OUTER JOIN

• In QJ1, an EMPLOYEE record is joined only if it has a
matching DEPARTMENT with D.DNUMBER=E.DNO

• Hence, an EMPLOYEE with NULL for E.DNO will not
appear in the query result

• Also, a DEPARTMENT that has no matching EMPLOYEE
records (i.e. currently has no employees) does not appear
in the query result

• OUTER JOINs gives the options to include every
EMPLOYEE record or every DEPARTMENT record in the
query results

• A record that does not have a matching joined record will
be “padded” with an imaginary “NULL record” from the
other table (all its attributes will be NULL)

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Types of join – LEFT OUTER JOIN

• Example: Query QJ2: Retrieve the employee names
with the names of the department they work for;
every department must appear in the result even if it
has no employees

This can be written using joined tables as follows:

SELECT E.FNAME, E.LNAME, D.DNAME

FROM (DEPARTMENT AS D LEFT OUTER JOIN

EMPLOYEE AS E ON D.DNUMBER=E.DNO) ;

Note: An earlier left outer join syntax in ORACLE is as follows:

SELECT E.FNAME, E.LNAME, D.DNAME

FROM DEPARTMENT AS D, EMPLOYEE AS E

WHERE D.DNUMBER += E.DNO ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Types of join – RIGHT OUTER JOIN

• Example: Query QJ3: Retrieve the employee names
with the names of the department they work for;
every employee must appear in the result even they
are not currently assigned to a department

This can be written using joined tables as follows:

SELECT E.FNAME, E.LNAME, D.DNAME

FROM (DEPARTMENT AS D RIGHT OUTER JOIN

EMPLOYEE AS E ON D.DNUMBER=E.DNO) ;

Note: An earlier left outer join syntax in ORACLE is as follows:

SELECT E.FNAME, E.LNAME, D.DNAME

FROM DEPARTMENT AS D, EMPLOYEE AS E

WHERE D.DNUMBER =+ E.DNO ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Types of join – FULL OUTER JOIN

• Example: Query QJ4: Retrieve the employee names
with the names of the department they work for;
every employee and every department must appear
in the result

This can be written using joined tables as follows:

SELECT E.FNAME, E.LNAME, D.DNAME

FROM (DEPARTMENT AS D FULL OUTER JOIN

EMPLOYEE AS E ON D.DNUMBER=E.DNO) ;

Note: An earlier left outer join syntax in ORACLE is as follows:

SELECT E.FNAME, E.LNAME, D.DNAME

FROM DEPARTMENT AS D, EMPLOYEE AS E

WHERE D.DNUMBER +=+ E.DNO ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Types of join – NATURAL JOIN

• If the join attributes in both tables have the same
name, the join condition can be left out (it is
automatically added by the system)

• NATURAL JOIN is a form of inner join

• Example: QJ5: We rename DNUMBER in DEPARTMENT
to DNO to match the join attribute name (DNO) in
EMPLOYEE (we also rename other attributes)

• Implicit join condition is E.DNO = D.DNO

SELECT E.FN, E.LN, E. ADR

FROM (DEPARTMENT AS D(DNM, DNO, MSSN, STRDATE)

NATURAL JOIN

 EMPLOYEE AS E(FN,MI,LN,S,BD,ADR,SX,SAL,SU,DNO) ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Joined Tables – Other Examples

• Query 8: Retrieve the employee names, and the names of

their direct supervisor

Q8:SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME

 FROM (EMPLOYEE AS E INNER JOIN EMPLOYEE AS S

 ON E.SUPERSSN=S.SSN);

• In Q8, an employee with no supervisor will not appear in

the result; if we want every employee to appear, we write:

Q8':SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME

 FROM (EMPLOYEE E LEFT OUTER JOIN

 EMPLOYEE S ON E.SUPERSSN=S.SSN)

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Joined Tables – Other Examples

• Examples:
Q1:SELECT FNAME, LNAME, ADDRESS

 FROM EMPLOYEE, DEPARTMENT
 WHERE DNAME='Research' AND DNUMBER=DNO ;

• could be written as:
Q1:SELECT FNAME, LNAME, ADDRESS

 FROM (EMPLOYEE JOIN DEPARTMENT
 ON DNUMBER=DNO)
 WHERE DNAME='Research’ ;

• or as:
Q1:SELECT FNAME, LNAME, ADDRESS

 FROM (EMPLOYEE NATURAL JOIN DEPARTMENT
 AS DEPT(DNAME, DNO, MSSN, MSDATE))
 WHERE DNAME='Research’ ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Joined Tables – Other Examples

• Another Example: Q2 could be written as follows;

this illustrates multiple joins in the joined tables

Q2:SELECT PNUMBER, DNUM, LNAME,

 BDATE, ADDRESS

 FROM ((PROJECT JOIN DEPARTMENT ON

 DNUM=DNUMBER) JOIN

 EMPLOYEE ON

MGRSSN=SSN))

 WHERE PLOCATION='Stafford’ ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Aggregate Functions

• Include COUNT, SUM, MAX, MIN, and AVG

• These can summarize information from multiple

tuples into a single tuple

• Query 15: Find the maximum salary, the

minimum salary, and the average salary among

all employees.

Q15: SELECT MAX(SALARY) AS HIGH_SAL,

 MIN(SALARY) AS LOW_SAL,

 AVG(SALARY) AS MEAN_SAL

 FROM EMPLOYEE ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Aggregate Functions (cont.)

• Query 16: Find the maximum salary, the

minimum salary, and the average salary among

employees who work for the 'Research'

department.

Q16: SELECT MAX(E.SALARY), MIN(E.SALARY),

 AVG(E.SALARY)

 FROM EMPLOYEE E, DEPARTMENT D

 WHERE E.DNO=D.DNUMBER AND

 D.DNAME='Research' ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Aggregate Functions (cont.)

• Queries 17 and 18: Retrieve the total number of

employees in the company (Q17), and the number of

employees in the 'Research' department (Q18). (Note:

COUNT(*) counts the number of selected records)

Q17: SELECT COUNT (*)

 FROM EMPLOYEE ;

Q18: SELECT COUNT (*)

 FROM EMPLOYEE AS E, DEPARTMENT AS D

 WHERE E.DNO=D.DNUMBER AND

 D.DNAME='Research’ ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Grouping (Partitioning Records into

Subgroups)

• In many cases, we want to apply the aggregate
functions to subgroups of tuples in a relation

• Each subgroup of tuples consists of the set of
tuples that have the same value for the grouping
attribute(s) – for example, employees who work in
the same department (have the same DNO)

• The aggregate functions are applied to each
subgroup independently

• SQL has a GROUP BY-clause for specifying the
grouping attributes, which must also appear in the
SELECT-clause

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Grouping (cont.)

• Query 20: For each department, retrieve the department
number, the number of employees in the department, and
their average salary.
Q20: SELECT DNO, COUNT (*), AVG (SALARY)

 FROM EMPLOYEE
 GROUP BY DNO ;

– In Q20, the EMPLOYEE tuples are divided into groups-
• Each group has same value for the grouping attribute DNO

– The COUNT and AVG functions are applied to each such
group of tuples separately (see Figure 5.1(a), next slide)

– The SELECT-clause includes only the grouping attribute
and the functions to be applied on each group of tuples

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Continued next page…

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Grouping (cont.)

• A join condition can be used with grouping

• Query 21: For each project, retrieve the project number,

project name, and the number of employees who work on

that project.

Q21: SELECT P.PNUMBER, P.PNAME, COUNT (*)

 FROM PROJECT AS P, WORKS_ON AS W

 WHERE P.PNUMBER=W.PNO

 GROUP BY P.PNUMBER, P.PNAME ;

– In this case, the grouping and aggregate functions are

applied after the joining of the two relations

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The HAVING-clause

• Sometimes we want to retrieve the values

of these aggregate functions for only those

groups that satisfy certain conditions

• The HAVING-clause is used for specifying

a selection condition on groups (rather than

on individual tuples)

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The HAVING-Clause (cont.)

• Query 22: For each project on which more than two

employees work, retrieve the project number, project

name, and the number of employees who work on

that project (Figure 5.1(b) – next two slides).

Q22: SELECT PNUMBER, PNAME, COUNT(*)

 FROM PROJECT, WORKS_ON

 WHERE PNUMBER=PNO

 GROUP BY PNUMBER, PNAME

 HAVING COUNT(*) > 2 ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Continued next page…

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Summary of SQL Queries

• A query in SQL can consist of up to six clauses,
but only the first two, SELECT and FROM, are
mandatory. The clauses are specified in the
following order:

SELECT <attribute list>
FROM <table list>
[WHERE <condition>]
[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]
[ORDER BY <attribute list>] ;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Summary of SQL Queries (cont.)

• The SELECT-clause lists the attributes or functions to be
retrieved

• The FROM-clause specifies all relations (or aliases) needed in
the query but not those needed in nested queries, as well as
joined tables

• The WHERE-clause specifies the conditions for selection and
join of tuples from the relations specified in the FROM-clause

• GROUP BY specifies grouping attributes

• HAVING specifies a condition for selection of groups

• ORDER BY specifies an order for displaying the query result

– Conceptually, a query is evaluated by first applying the
WHERE-clause, then GROUP BY and HAVING, and finally
the SELECT-clause and ORDER BY

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Specifying General Constraints

as Assertionsin SQL

 General constraints: constraints that do not fit in

the basic SQL constraints (primary keys,

UNIQUE, foreign keys, NOT NULL – see

Chapter 4)

 Mechanism: CREAT ASSERTION

 Components include:

 a constraint name,

 followed by CHECK,

 followed by a condition that must be TRUE

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Assertions: An Example

“The salary of an employee must not be greater

than the salary of the manager of the department

that the employee works for’’

CREAT ASSERTION SALARY_CONSTRAINT

CHECK (NOT EXISTS (SELECT *

 FROM EMPLOYEE E, EMPLOYEE M,

DEPARTMENT D

 WHERE E.SALARY > M.SALARY AND

 E.DNO=D.NUMBER AND

D.MGRSSN=M.SSN))

constraint

name,

CHECK,

condition

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Using General Assertions

1. Specify a query that violates the condition;
include inside a NOT EXISTS clause

2. Query result must be empty; apply NOT

EXISTS to it in the CHECK clause

3. If the query result is not empty, the

assertion has been violated (CHECK will

evaluate to FALSE)

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

SQL Triggers

- Used to monitor a database and initiate
action when certain events and conditions
occur (see Section 26.1 for details)

- Triggers are expressed in a syntax similar
to assertions and include the following:

Event
• Such as an insert, deleted, or update operation

Condition

Action

• To be taken when the condition is satisfied

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

SQL Triggers: An Example

A trigger to compare an employee’s salary to his/her
supervisor during insert or update operations:

CREATE TRIGGER INFORM_SUPERVISOR

BEFORE INSERT OR UPDATE OF

SALARY, SUPERVISOR_SSN ON EMPLOYEE

FOR EACH ROW

 WHEN

 (NEW.SALARY> (SELECT SALARY FROM EMPLOYEE

 WHERE SSN=NEW.SUPERVISOR_SSN))

 INFORM_SUPERVISOR (NEW.SUPERVISOR_SSN,NEW.SSN);

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Views in SQL

- A view is a “virtual” table that is derived

from other tables

- Allows for limited update operations (since

the table may not physically be stored)

- Allows full query operations

- A convenience for defining complex

operations once and reusing the definition

- Can also be used as a security mechanism

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Specification of Views

 SQL command: CREATE VIEW

- a virtual table (view) name

- a possible list of attribute names (for example,

when arithmetic operations are specified or when

we want the names to be different from the

attributes in the base relations)

- a query to specify the view contents

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

SQL Views: An Example

- Specify a virtual DEPT_INFO table to summarize

departmental information

- Makes it easier to query without having to specify the

aggregate functions, GROUP BY, and HAVING

CREATE VIEW DEPT_INFO(DNO, NO_EMPS,

TOTAL_SAL) AS

 SELECT DNO, COUNT(*), SUM(SALARY)

 FROM EMPLOYEE

 GROUP BY DNO;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Querying the View

- We can specify SQL retrieval queries on a

view table, same as on a base table:
 SELECT DNO

 FROM DEPT_INFO

 WHERE NO_OF_EMPS > 100;

- Can also specify joins and other retrieval

operations on the view

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

SQL Views: Another Example

- Specify a virtual WORKS_ON table (called

WORKS_ON_NEW), with EMPLOYEE and PROJECT

names (instead of numbers)

- This makes it easier to query by names without having

to specify the two join conditions

CREATE VIEW WORKS_ON_NEW AS

 SELECT FNAME, LNAME, PNAME, HOURS

 FROM EMPLOYEE, PROJECT, WORKS_ON

 WHERE SSN=ESSN AND PNO=PNUMBER

 GROUP BY PNAME;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Querying a View (cont.)

We can specify SQL retrieval queries on a

view table, same as on a base table:
 SELECT FNAME, LNAME

 FROM WORKS_ON_NEW

 WHERE PNAME=‘Research’;

When no longer needed, a view can be

dropped:
DROP WORKS_ON_NEW;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

 View Implementation

- View implementation is hidden from the user

- Two main techniques

1. Query modification:

DBMS automatically modifies the view query into a

query on the underlying base tables

Disadvantage:

Inefficient for views defined via complex queries

• Especially if many queries are to be applied to the

view within a short time period

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

View Implementation (cont.)

2. View materialization:

- Involves physically creating and keeping a
temporary table that holds the view query result

- Assumes that other queries on the view will follow

Concerns:

- Maintaining correspondence between the base
tables and view when the base tables are updated

Strategy:

- Incremental update of the temporary view table

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Updating of Views

- All views can be queried for retrievals, but many

views cannot be updated

- Update on a view on a single table without

aggregate operations:

If view includes key and NOT NULL attributes, view

update may map to an update on the base table

- Views involving joins and aggregate functions are

generally not updatable unless they can be mapped

to unique updates on the base tables

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Checking Views for Updatability

- When a user intends to update a view, must
add the clause WITH CHECK OPTION at the end
of the CREATE VIEW statement

- This allows the system to check for updatability

- If view is not updatable, and error will be
generated

- If view is updatable, system will create a mapping
strategy to process view updates

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Schema modification in SQL

- There are two many commands for
modifying schema constructs

- DROP statement can remove named schema
constructs, such as tables, constraints, assertions,
views, and even schemas

- ALTER statement can be used to change a table
by adding or dropping of attributes and table
constraints

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Example: DROP TABLE

• Used to remove a relation (base table) and

its definition

• The relation can no longer be used in

queries, updates, or any other commands

since its description no longer exists

• Example:

DROP TABLE DEPENDENT;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Example: DROP TABLE (cont.)

• If the table being dropped is referenced

from other tables, it cannot be dropped and

an error is generated

• By adding CASCADE, all references to the

table are automatically removed

• Example:

DROP TABLE DEPENDENT CASCADE;

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Example: ALTER TABLE

• Can be used to add or drop an attribute
from a base relation
– Suppose we want to remove the attribute BDATE

from the EMPLOYEE table

• Example:
ALTER TABLE EMPLOYEE DROP BDATE ;

• If the attribute is referenced from another
table, an error is generated unless
CASCADE is used

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Example: ALTER TABLE (cont.)

• Suppose we want to add an attribute JOB
– Will have NULLs (or some default) in all the tuples

after command is executed; hence, NOT NULL not
allowed for new JOB attribute

• Example:
ALTER TABLE EMPLOYEE ADD JOB
VARCHAR(12);

• The database users must enter values for
the new attribute JOB for each EMPLOYEE
tuple.
– This can be done using the UPDATE command.

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 5 Summary

• More Complex SQL Retrieval Queries

• Specifying Additional Constraints and

Actions in SQL

– CREATE ASSERTION

– CREATE TRIGGER

• Views (virtual tables) in SQL

– CREATE VIEW

• Schema Modification in SQL

– ADD, DROP statements

